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Abstract

Hyperspectral reflectance data representing a wide range of canopies were simulated using the combined PROSPECT + SAIL model.

The simulations were used to study the stability of recently proposed vegetation indices (VIs) derived from adjacent narrowband spectral

reflectance data across the visible (VIS) and near infrared (NIR) region of the electromagnetic spectrum. The prediction power of these

indices with respect to green leaf area index (LAI) and canopy chlorophyll density (CCD) was compared, and their sensitivity to canopy

architecture, illumination geometry, soil background reflectance, and atmospheric conditions were analyzed. The second soil-adjusted

vegetation index (SAVI2) proved to be the best overall choice as a greenness measure. However, it is also shown that the dynamics of the

VIs are very different in terms of their sensitivity to the different external factors that affects the spectral reflectance signatures of the

various modeled canopies. It is concluded that hyperspectral indices are not necessarily better at predicting LAI and CCD, but that selection

of a VI should depend upon (1) which parameter that needs to be estimated (LAI or CCD), (2) the expected range of this parameter, and (3)

a priori knowledge of the variation of external parameters affecting the spectral reflectance of the canopy. D 2001 Elsevier Science Inc. All

rights reserved.

1. Introduction

Spectral reflectance of vegetation in the visible (VIS)

region of the electromagnetic spectrum is primarily gov-

erned by chlorophyll pigments (Thomas & Gausman, 1977).

Developments within the field of hyperspectral remote

sensing imaging sensors have allowed for new ways of

monitoring plant growth and estimating potential photosyn-

thetic productivity.

Many studies have focused on the relationship between

pigment concentration and optical properties of leaves

(Horler, Dockray, & Barber, 1983; Jacquemoud et al.,

1996; Lichtenthaler, Gitelson, & Lang, 1996). A number

of investigators have studied the relationship between

canopy spectral reflectance and canopy characteristics for

major crops (Baret, Champion, Guyot, & Podaire, 1987;

Gilabert, Gandia, & Melia, 1996; Jackson & Pinter, 1986).

For example, spectral vegetation indices (VIs) calculated as

linear combinations of near infrared (NIR) and VIS red

reflectance have been found to be well correlated with

canopy cover, leaf area index (LAI), and absorbed photo-

synthetically active radiation (APAR) (Elvidge & Chen,

1995; Myneni & Williams, 1994). However, it has been

shown that most traditional VIs are sensitive to soil back-

ground, especially at low LAIs (Huete, 1989; Huete, Jack-

son, & Post, 1985).

The wavelength region located in the VIS±NIR transi-

tion has been shown to have a high information content for

vegetation spectra (Collins, 1978; Horler, Dockray, & Bar-

ber, 1983). The spectral reflectance of vegetation in this

region is characterized by very low reflectance in the red

part of the spectrum followed by an abrupt increase in

reflectance at 700±740 nanometer (nm) wavelengths. This

spectral reflectance pattern of vegetation is generally

referred to as the `̀ red edge.'' Several studies have shown

that measures based on the red edge position or shape are

likewise well correlated with biophysical parameters at the

canopy level, but less sensitive to spectral noise caused by
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the soil background and by atmospheric effects (Baret,

Jacquemoud, Guyot, & Leprieur, 1992; Demetriades-Shah,

Steven, & Clark, 1990; Guyot, Baret, & Jacquemoud, 1992;

Mauser & Bach, 1995).

The objective of the present study is to compare different

VIS±NIR spectral reflectance-based approaches for estima-

tion of LAI and canopy chlorophyll density (CCD). As part

of this assessment the effects of the soil background and the

atmosphere are considered. The analyses are based on

simulated canopy spectral reflectance data using acknowl-

edged radiative transfer models in combination with real soil

reflectance data.

The study is composed of three phases addressing (1) the

effects of structural and biochemical variation in the canopy,

(2) the effects of variations in soil background reflectance,

and (3) the effects of varying atmospheric conditions. A

canopy reflectance database was created for each phase of

the study.

2. Canopy reflectance simulations

Canopy spectral reflectance was simulated using the

PROSPECT leaf optical model (Baret et al., 1992; Jacque-

moud & Baret, 1990) coupled with the Scattering by

Arbitrarily Inclined Leaves (SAIL) canopy reflectance

model (Verhoef, 1984) modified to include the hot spot

effect (Kuusk, 1991). The SAIL model is an analytical,

physically based four-stream radiative transfer model that

considers the canopy a homogeneous, infinitely extended

vegetation layer made up of leaves distributed at random.

The leaves are considered perfect Lambertian scatterers

and assumed to have a random distribution in terms of

azimuth angle. The leaf zenith angle distribution is con-

sidered ellipsoidal, characterized by the mean leaf inclina-

tion angle. PROSPECT is a leaf optical properties model

that estimates leaf reflectance and transmittance from other

leaf characteristics. The model idealizes the leaf as a stack

of identical elementary layers defined by a refractive index

and an absorption coefficient, and assumes that all leaf

components are distributed homogeneously within the leaf.

Both of these models have proven very stable and generate

accurate results whilst being relatively simple in terms of

the number of input parameters needed (Goel & Thomp-

son, 1984; Jacquemoud, Baret, Andrieu, Danson, & Jag-

gard, 1995; Jacquemoud et al., 1996). The combined

SAIL + PROSPECT model (Jacquemoud, 1993) calculates

canopy spectral reflectance computed from the following

input parameters:

� Biophysical parameters: Leaf chlorophyll a + b con-

centration, Cab (mg/cm2); Leaf mesophyll structure, N;

Leaf water depth, Cw (cm); Leaf dry matter content,

Cdm (g/cm2); Green leaf area index, LAI; Leaf mean

tip angle, MTA.

� Soil spectral reflectance, rs(l).
� External parameters: Solar zenith and azimuth angle,

qs (°) and ys (°); View zenith and azimuth angles, qv

(°) and yv (°); Fraction of incident diffuse skylight

expressed in terms of visibility, Vis (km); The Kuusk

hot spot size parameter, s.

The mathematical form of the combined model is given

by Eq. (1):

r�l� � f �qs;ys; qv;yv;MTA; LAI ; N ;

Cab;Cw;Cdm; s;Vis; rs�l�� �1�
where r is reflectance at wavelength l.

Three canopy spectral reflectance databases were con-

structed to investigate the effects of:

1. canopy architecture and composition (Canopy effects),

2. background spectral reflectance (Background ef-

fects), and,

3. atmospheric composition (Atmospheric effects).

Leaf water content governs the reflectance properties

beyond 1000 nm, but has practically no effect on the

spectral properties in the VIS and NIR regions. Variations

of leaf dry matter content affects canopy reflectance by

increasing or decreasing the multiple intercellular scattering

of the NIR rays. However, for practical remote sensing

applications, this effect can be assumed to be negligible,

because the within-crop variation of leaf dry matter content

is very stable. The leaf structure parameter was fixed at 1.5

in the simulations, which according to Jacquemoud and

Baret (1990) corresponds to most plant leaves. Only nadir

view angle (qv = 0) was considered. LAI is a key variable

frequently used as input for crop growth models and soil±

vegetation±atmosphere-transfer (SVAT) models. It is func-

tionally linked with the evolution of canopy spectral reflec-

tance over the growth season. For these reasons, all three

databases are constructed from simulations where LAI is

adjusted as the controlling variable. The photosynthetic

potential of the plants is primarily controlled by the con-

centration of chlorophyll pigments, which are intimately

involved in the photosynthetic process. The CCD is a

measure of photosynthetic potential at the canopy level

and is calculated as the product of the model input para-

meters LAI and Cab. The parameters used to establish the

canopy reflectance databases are summarized in Table 1.

2.1. Canopy effects

Canopy reflectance in the VIS and NIR has been shown

to be affected not only by LAI and pigment concentration

but also by canopy architecture, illumination and viewing

geometry (Jackson & Pinter, 1986; Pinter, Jackson, Ezra, &

Gausman, 1985). These effects were considered in the

model simulations by changing the leaf chlorophyll content,
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the leaf mean tip angle, LAI+ and the solar zenith angle. The

range of these parameter values was selected to represent a

broad range of canopies, according to Table 1. The resulting

database holds simulated canopy spectral reflectance data

for 1,680 different canopies.

2.2. Background effects

A study of prediction power and sensitivity to external

factors, which in this context includes all factors other than

LAI or CCD, should also include sensitivity to noise

induced by variations in the background reflection. This

was accomplished by simulation of a new set of spectra

using measured spectral reflectance properties of each of

five spectrally distinct soils as the lower boundary reflec-

tance in the simulations. The soil reflectance database was

created from topsoil samples of five U.S. cropland soils as

part of a study by Daughtry, McMurtrey, Kim, and Chap-

pelle (1996). The spectral diversity represented by these

soils spans the range of reflectance encountered over the

vast majority of midlatitude soils. The topsoil samples were

first dried and the spectral reflectance measured. After the

spectra of air-dried samples were acquired, the samples were

thoroughly wetted with water and allowed to drain, and a

second set of spectra was acquired. The range of spectral

reflectances associated with each soil type is shown in Fig.

1. Whereas the overall shape of the spectral reflectance

curve for a particular soil seems to be unaffected, the soil

moisture content is governing the magnitude of the soil

spectral reflectance. Each soil type was thus used as back-

ground in simulations where only LAI was varied to

investigate the relative importance of soil background. The

names and acronyms for the soils used in this study are

summarized in Table 2.

2.3. Atmospheric effects

When satellite data are utilized to derive spectral reflec-

tance for calculation of VIs, one has to consider their

sensitivity to the absorption and scattering effects of the

atmosphere. Both of these effects influence the extraterres-

trial spectrum by modifying the spectral energy passing

through the atmosphere, and so erroneous assumptions

about the composition of the atmosphere at the time of data

acquisition can have a significant impact on some VIs

(Huete & Jackson, 1988; Slater & Jackson, 1982).

Several gases contribute to the overall atmospheric

absorption of radiation in the solar spectrum. However, only

the atmospheric gases oxygen (O2), water vapor (H2O), and

ozone (O3) are of interest in relation to this study because

these gases exhibit absorption features within the VIS±NIR

range (Vermote, Tanre, Deuze, Herman, & Morcrette, 1996).

The H2O contribution mainly affects wavelengths greater

than 700 nm. O3 is a significant absorber between 550 and

650 nm, and the influence of O2 is limited to a very strong

but narrow band around 700 nm. Whereas the concentration

of O2 can be assumed constant at standard temperature and

pressure (STP), H2O and O3 concentrations normally

depend on time of year and location.

Atmospheric scattering of direct solar radiation is usually

described in terms of Maxwell's electromagnetic wave equa-

tion assuming that all scatterers are spheres. The scattering

Table 1

Parameter values used to establish the canopy reflectance databases

Model parameters Database 1, Canopy effects Database 2, Background effects Database 3, Atmospheric effects

LAI (ÿ ) 0.1, 0.2, 0.4, 0.8, 1.6, 2.4,

3.2, 4.0, 4.8, 6.4, 9.6, 12.8

0.1, 0.2, 0.4, 0.8, 1.6, 2.4, 3.2, 4.0,

4.8, 6.4, 9.6, 12.8

0.1, 0.2, 0.4, 0.8, 1.6, 2.4,

3.2, 4.0, 4.8, 6.4, 9.6, 12.8

Cab (mg/cm2) 20, 30, 40, 50, 60, 70, 80 50 50

qs (°) 15, 30, 45, 60 45 45

MTA (°) 30, 40, 50, 60, 70 50 50

rs(l)a (ÿ ) aw aw, ad, bw, bd, cw, cd, dw, dd, ew, ed aw

Atmospheric H2O (cm) 3 3 1.5, 3.0, 4.5

Atmospheric t550 (ÿ ) 0.3 0.3 0.05, 0.3, 1.0

a The subscript (`w' or `d') refers to the wetness of the soil, i.e. wet or dry.

Fig. 1. Spectral reflectance of five spectrally distinct topsoils. Dry soil

reflectance is represented by the top curve, and wet soil reflectance is

represented by the bottom curve. A detailed description of each soil type

can be found in Table 2.
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caused by air molecules (Raleigh scattering) is a function of

optical air mass and can therefore also be assumed constant at

STP. However, the scattering caused by aerosols (Mie scat-

tering) depends on the atmospheric turbidity or aerosol

optical thickness as well as the form, size, distribution, and

nature of the aerosols. The aerosol optical thickness (tA) is a

function of wavelength but is normally presented as the value

at 550 nm (t550), or estimated from synoptic measurements of

horizontal visibility. The form and size and nature of aerosols

can be described by grouping the aerosols into classes, i.e.

Dust-like, Oceanic, Water-soluble, and Soot. The distribution

can then be described by assigning an appropriate fraction to

each class, so that the fractions sum up to unity.

The Second Simulation of the Satellite Signal in the Solar

Spectrum (6S) model (Vermote et al., 1996) was used to

investigate the effect of the atmosphere on the selected

range of VIs. This model considers gaseous absorption as

well as Rayleigh and Mie scattering including the interac-

tion between these effects.

A look-up table relating ground reflectance to top-of-

atmosphere (TOA) apparent spectral reflectance for each

spectral band was created using the 6S model. The para-

meters used to simulate the canopy reflectances that were

converted to TOA apparent reflectance are listed in Table 2

(Database 2 Ð Atmospheric effects). The atmospheric

parameters used for the conversion were those of a standard

midlatitude summer atmosphere (H2O = 2.93 g/cm2,

O3 = 319 DU1; McClatchey, Fenn, Selby, Volz, & Garing,

1971) and a continental aerosol mixture model where

t550 = 0.3. The relationship between ground and TOA

reflectance proved to be slightly curvilinear, allowing

TOA apparent reflectance to be calculated directly from

the look-up table using linear interpolation.

The TOA apparent spectral reflectances were then atmo-

spherically corrected using 6S in forward mode to obtain

ground reflectance for nine different combinations of atmo-

spheric water vapor and visibility. Since O3 concentration

tends to be a function of latitude and season it was set

constant to the model value for a midlatitude summer atmo-

sphere (O3 = 319 DU). Atmospheric H2O was set to 1.5, 2.93,

and 4.5 g/cm2 representing a normal range for midlatitude

summer environments. Sunphotometer measurements ob-

tained as part of the AERONET initiative (Holben et al.,

1998) reveal a very wide range of aerosol optical thicknesses

in a mixed urban and metropolitan area such as the eastern

shore of the United States. Based on these records the aerosol

optical thicknesses (t550) for the simulations was set to 0.05

(clean), 0.3 (turbid), and 1.0 (very turbid). The aerosol model

used was `̀ continental'' for the clean and turbid atmosphere,

and `̀ urban'' for the very turbid atmosphere. Ground reflec-

tance was then calculated for all combinations of H2O and

t550 based on the TOA apparent reflectance calculated from

the simulated canopy reflectances.

3. Calculation of VIs

Most commonly used VIs are based on discrete Red and

NIR bands, because vegetation exhibits unique reflectance

properties in these bands. The early indices are generally

divided into ratio indices and orthogonal indices depending

upon their nature. Whereas ratio indices are calculated

independently of soil reflectance properties, the orthogonal

indices refer to a base line specific to the soil background.

This soil line is normally defined by the coefficients a and b

giving the slope and intercept as determined by linear

regression of the soil reflectance in the Red±NIR spectral

space. More recently, indices have emerged that can be

considered hybrid versions of the classic ratio and orthogo-

nal indices. Many VIs have been proposed over the past 30

years. In this study, seven of the most common VIs were

selected for comparison with hyperspectral indices includ-

ing one new index based on three discrete bands, i.e. Green,

Red, and NIR bands.

All VIs were calculated from the simulated spectral data.

The spectral data were simulated as adjacent 5 nm bands,

and then resampled to 10 nm bands using a cubic spline

function (Press, Flannery, Teukolsky, & Vetterling, 1989).

Broadband ratio and orthogonal-based indices were calcu-

lated by spectral resampling of the 10 nm data using the

Landsat TM5 filter functions (BSC, 1999). Narrowband

versions of the selected VIs were calculated from the 670

(Red) and 800 nm (NIR) spectral bands.

3.1. Ratio VIs

Perhaps the best known of the classic VIs are the ratio

vegetation index (RVI; Pearson & Miller, 1972) and the

normalized difference vegetation index (NDVI; Rouse,

Haas, Schell, Deering, & Harlan, 1974) that are based on

1 Concentration of atmospheric gases is normally presented in Dobson

Units (DU), where 1 DU is defined as 0.01 mm thickness at STP.

Table 2

Names and acronyms for the soils used in this study

Soil series Classification Moist soil color (Munsell) Acronym

Othello Fine-silty, mixed, active, mesic Typic Endoaquults Dark greyish brown (2.5Y 4/2) a

Barnes Fine-loamy, mixed, superactive, frigid Calcic Hapludolls Black (10YR 2/1) b

Cecil Fine, kaolinitic, thermic Typic Kanhapludults Dark grayish brown (10YR 4/2) c

Houston Very-fine, smectitic, thermic Oxyaquic Hapluderts Very dark gray (5Y 3/1) d

Portneuf Coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcids Pale brown (10YR 6/3) e
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the reflectance in the Red and NIR part of the spectrum. RVI

is the slope of the line that joins the origin and the

vegetation point in Red±NIR space (Eq. (2)):

RVI � NIR

Red
� tan�qV� �2�

where qV is the angle between this line and the abscissa. NDVI

is also angularly defined and linked to the RVI (Eq. (3)):

NDVI � NIRÿ Red

NIR� Red
� tan�qV ÿ p=4�: �3�

In general, these indices tend to enhance the contrast

between soil and vegetation while minimizing the effects of

illumination conditions (Baret & Guyot, 1991). However,

they have been shown to be sensitive to soil brightness

effects (Baret, Guyot, & Major, 1989; Huete, 1989; Roujean

& Breon, 1995), especially at low vegetation cover (Fig. 2).

3.2. Orthogonal VIs

The second broad category of classic VIs are orthogonal

transformations. These indices are distinct from the ratio-

based indices in that the greenness isolines in the Red±NIR

space do not converge in the origin, but instead remain

parallel to the principal axis of soil spectral variation (Fig.

2). The perpendicular vegetation index (PVI; Richardson &

Wiegand, 1977) represents the orthogonal distance between

a point corresponding to canopy reflectance distance and the

soil line in Red±NIR space (Eq. (4)):

PVI � 1�������������
a2 � 1
p �NIRÿ a� Redÿ b�: �4�

A simpler index related to PVI is the weighted difference

vegetation index (WDVI; Clevers, 1989; Eq. (5)):

WDVI � NIRÿ a� Red: �5�

However, as shown by Baret and Guyot (1991) and others,

WDVI is functionally equivalent to PVI and was therefore

omitted from the analysis. PVI simplifies to the difference

vegetation index (DVI; Jordan, 1969) when the soil line

parameters are a = 1 and b = 0. DVI is calculated simply as

the difference between the NIR and the Red band (Eq. (6)):

DVI � NIRÿ Red: �6�

Unlike the angular indices (RVI and NDVI), PVI and DVI

perform relatively well at low LAI values, i.e. relatively

sparse vegetation cover, but they become more sensitive to

soil background reflectance as LAI increases (Fig. 2).

3.3. Hybrid VIs

Soil-adjusted vegetation indices (SAVIs) were deve-

loped to account for changes of the optical properties of

the background in an attempt to align the VI isolines

with the greenness isolines (usually expressed in terms

of LAI) over the entire dynamic range of the greenness

measure. Huete (1988) proposed the first soil-adjusted

vegetation index (SAVI), which includes a soil-adjust-

ment factor (L) to account for first-order soil background

variations (Eq. (7)).

SAVI � NIRÿ Red

NIR� Red� L
�1� L�: �7�

Huete (1988) found the optimal value of L to vary with

vegetation density, so he used a constant as optimization of

L would require prior knowledge of vegetation amounts.

SAVI is an exact solution for bare soil only when the soil

line parameters are a = 1 and b = 0. Baret et al. (1989)

argued that a VI should be adjusted on specific soil line

characteristics in order to be error-free at low LAI values. To

achieve this goal they proposed the transformed SAVI

(TSAVI; Eq. (8)). This index represents the angle between

the soil line and the vegetation point in Red±NIR spectral

space (Fig. 2).

TSAVI � a�NIRÿ a� Redÿ b�
a� NIR� Redÿ a� b

: �8�

Baret and Guyot (1991) later presented an improved

version of TSAVI (in this paper referred to as the adjusted

TSAVI [ATSAVI; Eq. (9)]) where the point of intersection of

the vegetation isolines has been shifted into the third

quadrant of the Red±NIR spectral space.

ATSAVI � a�NIRÿ a� Redÿ b�
a� NIR� Redÿ a� b� X �1� a2� : �9�

X is an adjustment factor, which is set to minimize

background effects (X = 0.08 in the original paper by

Baret and Guyot, 1991). Thus, the improvement of both

TSAVI and ATSAVI over SAVI was to consider the

actual gain (a) and intercept (b) values of the soil line

rather than assuming them to be 1 and 0, respectively.

Major, Baret, & Guyot (1990) used a simple canopy

reflectance model to show that canopy NIR reflectance

can be expressed as a linear function of canopy red

reflectance. Based on this finding, they obtained a second

version of the SAVI (SAVI2) that models the vegetation

isoline behavior by using the ratio b/a as the soil-adjust-

ment factor (Eq. (10)).

SAVI2 � NIR

Red� b=a
: �10�

Qi, Chehbouni, Huete, Kerr, & Sorooshian (1994)

proposed the second modified SAVI (MSAVI2), which

replaces the soil-adjustment factor (L) of SAVI with a

self-adjusting L (Eq. (11)). The L factor does not appear

in the final mathematical formulation of MSAVI2,

although an iterative L-function based on the product
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Fig. 2. The influence of soil background reflectance. The relationship between NIR and red reflectance for green LAI values (*) of 0, 0.2, 0.4, 0.8, 1.6, 3.2, and

6.4 is shown for different soil backgrounds. Red and NIR canopy reflectances were obtained from the `̀ Background effects'' database (Database 2, Table 1).

GLAI isolines (solid lines) are shown together with VI isolines (broken lines) for (a) the angular indices (RVI and NDVI), (b) PVI, (c) DVI, (d) TSAVI, (e)

ATASI, (f) SAVI2, (g) MSAVI2, and (h) RDVI. Parallel GLAI and VI isolines indicate that the VI is insensitive to soil background reflectance. The soil line

parameters (GLAI = 0) are a = 1.165 and b = 0.02288.
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of NDVI and WDVI was used in the derivation of

the MSAVI2.

MSAVI2

� 1

2
2�NIR� 1� ÿ

������������������������������������������������������
�2NIR��2 ÿ 8�NIRÿ Red�

q� �
:

�11�
A relatively new index proposed by Roujean and Breon

(1995), is the renormalized difference vegetation index

(RDVI; Eq. (12)). This index is a hybrid between DVI

and NDVI, and is supposed to combine the advantages of

DVI and NDVI for low and high vegetation coverages,

respectively (Fig. 2).

RDVI �
���������������������������
NDVI� DVI
p

: �12�

3.4. New VIs based on two or three discrete bands

Three indices including a band in the green part of the

spectrum were calculated. Kim, Daughtry, Chappelle, and

McMurtrey (1994) found the ratio of 550 and 700 nm

reflectance to be constant at the leaf level regardless of the

differences in chlorophyll concentrations, and defined a chlor-

ophyll absorption ratio index (CARI) based on this relation-

ship and the chlorophyll absorption band at 670 nm (Eq. (13)).

CARI � CAR
R700

R670
�13�

where CAR is the distance from the base line spanned by

the green reflectance peak (R550) and the reflectance at 700

nm (R700). CAR = |(a� 670 + R670 + b)|/(a2 + 1)0.5,

a = (R700ÿR550)/150 and b = R550ÿ (a� 550).

Gitelson, Merzlyak, & Lichtenthaler (1996), and Lich-

tenthaler et al. (1996) explored this idea and found strong

correlation between leaf chlorophyll content and the reflec-

tance ratios, R750/R700 and R750/R550.

A new VI denoted `̀ triangular vegetation index'' (TVI)

was developed as part of this study. The general idea behind

this index is to describe the radiative energy absorbed by the

pigments as a function of the relative difference between red

and NIR reflectance in conjunction with the magnitude of

reflectance in the green region, where the light absorption by

chlorophylls is relatively insignificant (Hall & Rao, 1987).

The index is calculated as the area of the triangle defined by

the green peak, the chlorophyll absorption minimum, and the

NIR shoulder in spectral space. It is based on the fact that both

chlorophyll absorption causing a decrease of red reflectance

and leaf tissue abundance causing increased NIR reflectance

will increase the total area of the triangle. The TVI index is

thus defined as the area spanned by the triangle ABC with the

coordinates given in spectral space (Eq. (14)):

TVI � 0:5jdet�AB;AC�j � 0:5�120�RNIR ÿ RGreen�
ÿ 200�RRed ÿ RGreen�� �14�

where A= (550 nm, RGreen), B = (670 nm, RRed), and

C = (750 nm, RNIR).

3.5. Hyperspectral VIs

The characteristic red edge reflectance pattern of vegeta-

tion has been the subject of many studies (Collins, 1978;

Gilabert et al., 1996; Gitelson et al., 1996; Horler, Dockray,

& Barber, 1983), all of which have shown the observed

blue-shift and red-shift of the red edge inflection point

(REIP) to be related to plant growth conditions. REIP can

be defined as the wavelength around 720 nm at which the

first derivative of the spectral reflectance curve reaches its

maximum value. REIP shifts toward shorter wavelengths

(blue-shift) are associated with a decrease in green vegeta-

tion density, and REIP shifts toward longer wavelengths

(red-shift) are likewise associated with an increase in green

plant material.

3.5.1. Parameterizing the red edge

The increase in vegetative chlorophyll-a concentration

during the growth cycle has been shown to cause a

red-shift of the inflection point (Horler, Dockray, &

Barber, 1983; Horler, Dockray, Barber, & Barringer,

1983). Collins (1978) argues that this phenomenon is

caused by polymer forms of chlorophyll adding closely

spaced absorption bands to the far red shoulder of the

main chlorophyll-a band. At the onset of senescence,

the mesophyll structures in the plant tissue (effective

near infrared reflectors) begin to collapse. Meanwhile,

leaf chlorophyll decreases causing red reflectance to

increase. These combined effects cause a blue-shift of

REIP. Different techniques have been adopted to para-

meterize this spectral shift. In the present study, three

different methods to derive the REIP were applied. Two

measures that depend on the shape of the red edge,

including the red and part of the NIR spectrum, were

also tested.

Miller, Hare, and Wu (1990) used an inverted Gaussian

model to describe the variation of reflectance as a function

of wavelength, R(l). This approach has the advantage that it

has a built-in smoothing of the red edge spectral reflectance

and has been used by several authors (Bonham-Carter,

1988; Broge, Hvidberg, Hansen, Andersen, & Nielsen,

1997).

R�l� � RS ÿ �RS ÿ R0�expÿ �lÿ l0�2
2s2

" #
: �15�

where RS is the `̀ shoulder'' reflectance at the NIR plateau,

usually at 780±800 nm; R0 is the minimum reflectance in

the chlorophyll trough at approximately 670 nm; l0 is the

wavelength of this minimum. s is the Gaussian shape

parameter, such that REIPGaus = l0 + s is the inflection point

of the red edge curve. The function is fitted to the measured

reflection data, R0(l), by adjusting the values of RS, R0, l0
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and s, thus minimizing the root mean square error (RMSE)

according to Eq. (16):

RMSE �

���������������������������������������PN
i�1

�R�li� ÿ R0�li��2

N

vuuut
�16�

where N denotes the number of bands in the red edge

wavelength interval (N = 16 with 10 nm spectral resolution).

A similar way of determining REIP is fitting a higher

order polynomial to the reflectance data in the red edge

spectral range. A high-order polynomial will capture poten-

tial asymmetry of the red edge, whereas the inverted

Gaussian model will average out such asymmetry. In this

study, a sixth-order polynomial (Eq. (17)) was applied to

derive the inflection point.

R�l� � c0 � c1l� c2l2 � c3l3 � c4l4 � c5l5

� c6l6: �17�
The VI denoted REIPPoly was determined by identifying the

roots of the second derivative of the polynomial (R00(l) = 0),

adopting the root where l was closer to 720 nm.

Recently, Dawson and Curran (1998) proposed a new

way to determine REIP. They applied a technique known as

Lagrangian interpolation (Press et al., 1989), which is

applied to the first-derivative transformation of the reflec-

tance spectrum. The technique fits a second-order polyno-

mial curve to three bands, from which the REIP is

determined. This approach was adopted as the third and last

method of determining the REIP of the narrowband data.

Elvidge and Chen (1995) calculated the first and second

derivatives of the spectral reflectance data and integrated the

absolute derivative values over the spectral region from 626

to 795 nm, denoting these indices 1DZ_DGVI and

2DZ_DGVI. They also integrated the first derivative spectra

with respect to the local baseline (1DL_DGVI). The per-

formance of the latter two indices was shown to be practi-

cally identical, and thus only 1DZ_DGVI and 2DZ_DGVI

were calculated in this study (Eqs. (18) and (19)):

1DZ DGVI �
Xln

l1

jr0�li�jDli; �18�

2DZ DGVI �
Xln

l1

jr00�li�jDli: �19�

3.5.2. Indices based on spectral continuum measures

An alternative way of utilizing hyperspectral reflectance

data is to calculate the spectral continuum in which the

analysis is based on the shape and area of the troughs

spanned by the spectral continuum. This approach has been

developed recently for airborne or satellite hyperspectral

imaging instruments and is mostly used by geologists

looking for distinct narrow absorption features in the spec-

tra, i.e. physical fingerprints of minerals (Ben-dor & Kruse,

1995; Kruse, 1988). It can be used to identify and quantify

any material that exhibits a discrete absorption feature such

as chlorophylls in live vegetation. In this study, the area

spanned by the chlorophyll absorption continuum (� 550

to � 730 nm) and the spectral reflectance curve was

calculated and denoted the chlorophyll absorption conti-

nuum index (CACI; Eq. (20)).

CACI �
Xln

li

�rc
i ÿ ri�Dli;

where rc
i � r1 � i

drc

dl
Dli:

�20�

This index is similar to the TVI index in the sense that both

indices represent the area spanned by the spectral reflec-

tance between the green peak and the NIR plateau.

However, all the spectral bands between the green peak

and the NIR shoulder are utilized when calculating CACI.

Continuum removal is taking this approach one step

further. Continuum removal is a means of normalizing

reflectance spectra to allow comparison of individual

absorption features from a common baseline. The conti-

nuum is a convex hull fit over the top of a spectrum utilizing

straight-line segments that connect local spectral maxima.

The first and last spectral data values are on the hull and

therefore the first and last bands in the continuum-removed

data will be equal to 1.0. The continuum was removed by

dividing it into the actual spectrum. The resulting image

spectra are equal to 1.0 where the continuum and the spectra

match and less than 1.0 where absorption features occur.

The continuum removed chlorophyll absorption index

(CRCAI; Eq. (21)) was defined as the area spanned by the

continuum-removed spectra and the continuum, i.e. the y = 1

line after continuum removal.

CRCAI �
Xln

l1

rc
i ÿ ri

rc
i

Dli;

where rc
i � r1 � i

drc

dl
Dli:

�21�

Another measure of the continuum-normalized spectrum

is the maximum depth of the chlorophyll absorption trough.

This measure is herein referred to as the continuum-

removed chlorophyll well depth (CRCWD), which is a

value between 0 and 1. It is thus directly comparable with

many traditional VIs such as NDVI and TSAVI.

4. Relating LAI and CCD to VIs

Because most VIs, including the REIP, approach a satura-

tion level with increasing green biomass, they can be fitted to

an exponential function. A modified version of Beer's law

has been suggested (Baret & Guyot, 1991; Wiegand et al.,

1992) to describe the relationship between a VI and LAI or

APAR. This model was adopted in this study to quantify the
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Table 3

Index VIG VIINF KVI RMSE RMSENORM Adj. R2

(a) LAI coefficients for Eq. (22) Ð Database 1 (Canopy effects)

REIPPoly 715.9508 737.2274 0.2734 6.9128 0.3249 0.5041

REIPGaus 711.9259 723.8883 0.2013 4.5650 0.3816 0.3886

REIPLagr 713.3438 742.9460 0.3783 8.6280 0.2915 0.5807

DGVI_DZ1 0.0604 0.7453 0.3138 0.0781 0.1141 0.8964

DGVI_DZ2 0.0009 0.0420 0.2323 0.0047 0.1155 0.8824

CACI 1.5588 57.7345 0.3071 5.9193 0.1054 0.9097

CRCAI 13.4624 139.0426 0.9933 13.0054 0.1036 0.9122

CRCWD 7.9383 92.6784 1.4344 5.5845 0.0659 0.9570

CARI ÿ 0.0105 13.1909 0.4931 6.5629 0.4971 0.3291

R750R700 0.6746 10.1558 0.4045 2.5898 0.2731 0.6147

R750R550 1.4163 9.5608 0.4277 2.4226 0.2974 0.5755

N_RVI ÿ 0.3787 28.0060 0.3176 5.6929 0.2006 0.7373

N_NDVI 0.1734 0.9108 1.1518 0.0514 0.0697 0.9561

N_TVI 1.2940 40.0103 0.3895 4.9925 0.1290 0.8768

N_DVI 0.0540 0.7203 0.3218 0.0756 0.1135 0.8979

N_RDVI 0.1138 0.7909 0.5125 0.0609 0.0900 0.9377

N_MSAVI2 0.5663 1.3906 0.5437 0.0719 0.0872 0.9412

N_PVI 0.0076 0.4535 0.3279 0.0498 0.1118 0.9012

N_TSAVI 0.0158 0.9043 1.2012 0.0614 0.0691 0.9563

N_SAVI2 0.5877 13.7091 0.3256 1.5678 0.1195 0.8885

N_ATSAVI 0.0225 0.8070 0.7487 0.0601 0.0766 0.9529

B_RVI 0.2746 22.7927 0.3283 5.1316 0.2279 0.6869

B_NDVI 0.2205 0.8904 1.0985 0.0541 0.0808 0.9429

B_TVI 3.4193 45.5142 0.3217 4.7534 0.1129 0.8989

B_DVI 0.0672 0.7280 0.3088 0.0744 0.1126 0.8984

B_RDVI 0.1376 0.7869 0.4859 0.0597 0.0920 0.9348

B_MSA2VI 0.5911 1.3709 0.5320 0.0711 0.0911 0.9362

B_PVI 0.0164 0.4578 0.3144 0.0490 0.1109 0.9015

B_TSAVI 0.0785 0.8827 1.1423 0.0628 0.0781 0.9457

B_SAVI2 0.8260 12.3091 0.3276 1.6770 0.1460 0.8423

B_ATSAVI 0.0597 0.7920 0.7162 0.0602 0.0822 0.9465

(b) LAI coefficients for Eq. (22) Ð Database 2 (Background effects)

REIPPoly 718.1625 738.0320 0.2999 0.5937 0.0299 0.9919

REIPGaus 710.8325 723.5917 0.3064 1.1873 0.0931 0.9269

REIPLagr 716.7261 744.0661 0.4662 1.5967 0.0584 0.9722

DGVI_DZ1 0.0659 0.7505 0.3407 0.0313 0.0457 0.9819

DGVI_DZ2 0.0011 0.0442 0.2314 0.0015 0.0344 0.9881

CACI 0.7603 58.5364 0.3422 1.9165 0.0332 0.9904

CRCAI 7.1589 143.0635 1.0951 9.3923 0.0691 0.9569

CRCWD 5.7640 94.0638 1.5243 6.1480 0.0696 0.9500

CARI ÿ 0.0279 10.9919 0.4726 0.2573 0.0233 0.9955

R750R700 0.5534 10.0476 0.4819 0.3929 0.0414 0.9859

R750R550 1.4541 9.4278 0.5153 0.3002 0.0377 0.9883

N_RVI ÿ 1.1020 29.5150 0.3806 1.6613 0.0543 0.9752

N_NDVI 0.1503 0.9282 1.2467 0.0512 0.0658 0.9589

N_TVI 0.9274 40.2132 0.4307 1.4258 0.0363 0.9890

N_DVI 0.0584 0.7293 0.3515 0.0305 0.0454 0.9822

N_RDVI 0.1016 0.8036 0.5771 0.0189 0.0269 0.9940

N_MSAVI2 0.5442 1.4138 0.6239 0.0204 0.0235 0.9954

N_PVI 0.0068 0.4595 0.3620 0.0181 0.0401 0.9862

N_TSAVI ÿ 0.0252 0.9223 1.3380 0.0420 0.0443 0.9804

N_SAVI2 0.2462 14.7820 0.3636 0.4274 0.0294 0.9925

N_ATSAVI ÿ 0.0105 0.8263 0.8443 0.0132 0.0158 0.9978

B_RVI ÿ 0.2763 23.5007 0.3955 1.1629 0.0489 0.9799

B_NDVI 0.1857 0.9113 1.1979 0.0522 0.0719 0.9520

B_TVI 2.9509 45.9251 0.3566 1.7516 0.0408 0.9857

B_DVI 0.0680 0.7380 0.3392 0.0312 0.0465 0.9812

B_RDVI 0.1192 0.8014 0.5529 0.0194 0.0285 0.9933

B_MSA2VI 0.5629 1.3955 0.6146 0.0206 0.0247 0.9949

B_PVI 0.0134 0.4646 0.3491 0.0186 0.0412 0.9853

B_TSAVI 0.0266 0.9047 1.2768 0.0435 0.0495 0.9761

Table 3 (continued)

Index VIG VIINF KVI RMSE RMSENORM Adj. R2

B_SAVI2 0.4853 13.1913 0.3706 0.3507 0.0276 0.9934

B_ATSAVI 0.0170 0.8139 0.8177 0.0149 0.0187 0.997

(c) LAI coefficients for Eq. (22) Ð Database 3 (Atmospheric effects)

REIPPoly 717.4049 738.2075 0.2959 4.8097 0.2312 0.6681

REIPGaus 711.2736 724.1225 0.2836 2.7463 0.2137 0.6991

REIPLagr 720.9583 745.5226 0.2862 5.9258 0.2412 0.6461

DGVI_DZ1 0.0563 0.6691 0.3219 0.1204 0.1965 0.7414

DGVI_DZ2 0.0037 0.0405 0.2177 0.0058 0.1581 0.7913

CACI 1.2044 50.8998 0.3142 9.6204 0.1936 0.7458

CRCAI 15.2997 140.9451 1.0547 10.7145 0.0853 0.9365

CRCWD 8.5133 92.8140 1.5308 5.2322 0.0621 0.9597

CARI ÿ 0.6381 13.6956 0.4822 6.8612 0.4787 0.3341

R750R700 0.5518 9.6191 0.4944 1.6315 0.1799 0.7859

R750R550 1.4325 9.9761 0.5298 1.4815 0.1734 0.7985

N_RVI ÿ 3.2190 38.9229 0.4281 18.1019 0.4295 0.3830

N_NDVI 0.1691 0.9143 1.2832 0.0569 0.0763 0.9448

N_TVI 0.9419 34.8280 0.3993 7.2481 0.2139 0.7171

N_DVI 0.0477 0.6406 0.3310 0.1173 0.1978 0.7402

N_RDVI 0.1075 0.7415 0.5437 0.1014 0.1599 0.8234

N_MSAVI2 0.5512 1.3420 0.5752 0.1379 0.1744 0.7965

N_PVI 0.0047 0.4016 0.3378 0.0780 0.1967 0.7435

N_TSAVI ÿ 0.0170 0.9063 1.3347 0.0724 0.0784 0.9409

N_SAVI2 0.2425 14.6646 0.3697 3.9311 0.2726 0.6050

N_ATSAVI 0.0078 0.7805 0.7875 0.0992 0.1284 0.8750

B_RVI ÿ 1.6192 30.3243 0.4388 11.7678 0.3684 0.4603

B_NDVI 0.2161 0.9065 1.2530 0.0526 0.0762 0.9455

B_TVI 2.8295 40.7737 0.3333 7.3343 0.1933 0.7495

B_DVI 0.0591 0.6553 0.3198 0.1153 0.1934 0.7471

B_RDVI 0.1300 0.7474 0.5209 0.0975 0.1580 0.8269

B_MSA2VI 0.5733 1.3395 0.5653 0.1281 0.1672 0.8099

B_PVI 0.0124 0.4110 0.3261 0.0766 0.1923 0.7503

B_TSAVI 0.0478 0.8983 1.3010 0.0667 0.0784 0.9416

B_SAVI2 0.4753 13.6349 0.3755 3.3715 0.2562 0.6352

B_ATSAVI 0.0429 0.7792 0.7655 0.0934 0.1268 0.8783

(d) CCD coefficients for Eq. (22) Ð Database 1 (Canopy effects)

REIPPoly 714.7183 740.9323 0.4884 4.9656 0.1894 0.7441

REIPGaus 711.0099 728.1105 0.3090 3.2364 0.1893 0.6927

REIPLagr 710.3510 744.1798 0.9338 6.1158 0.1808 0.7893

DGVI_DZ1 0.0666 0.6912 0.8554 0.1074 0.1720 0.8040

DGVI_DZ2 0.0025 0.0461 0.3815 0.0039 0.0891 0.9208

CACI 2.5564 55.4691 0.7296 7.5343 0.1424 0.8537

CRCAI 19.3801 143.2575 1.7764 11.2330 0.0907 0.9345

CRCWD 11.7055 93.0564 2.9427 7.9376 0.0976 0.9131

CARI ÿ 1.5639 10.6310 3.7128 7.1363 0.5852 0.2068

R750R700 1.1265 13.3636 0.4104 1.7362 0.1419 0.8268

R750R550 1.7795 12.5244 0.4142 1.6354 0.1522 0.8065

N_RVI 0.6465 32.7352 0.4576 4.3533 0.1357 0.8464

N_NDVI 0.1941 0.9159 2.4193 0.0646 0.0896 0.9307

N_TVI 0.9808 36.5406 1.2018 6.8345 0.1922 0.7692

N_DVI 0.0612 0.6789 0.8334 0.0995 0.1611 0.8234

N_RDVI 0.1141 0.7712 1.2958 0.0810 0.1233 0.8896

N_MSAVI2 0.5751 1.3786 1.2806 0.0934 0.1163 0.9008

N_PVI 0.0122 0.4269 0.8463 0.0656 0.1581 0.8291

N_TSAVI 0.0420 0.9097 2.5243 0.0789 0.0909 0.9277

N_SAVI2 0.9944 14.5370 0.5826 1.2622 0.0932 0.9277

N_ATSAVI 0.0283 0.8021 1.7470 0.0792 0.1024 0.9182

B_RVI 1.1751 28.6388 0.3995 3.5563 0.1295 0.8496

B_NDVI 0.2412 0.9006 2.1982 0.0550 0.0834 0.9411

B_TVI 3.8217 42.6207 0.8526 6.3892 0.1647 0.8173

B_DVI 0.0752 0.6901 0.7812 0.0957 0.1556 0.8319

(continued on next page)
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sensitivity of the calculated indices to solar zenith angle,

mean leaf tip angle, and background reflectance.

VI � VI1 � �VIg ÿ VI1�exp�ÿKVILAI�: �22�
The model assumes the canopy to be a homogenous

substance of green plant material with an optical thickness

given by LAI. The dynamic range of the VI is expressed as

the difference between the bulk VI, VI1, and the index

value corresponding to bare soil conditions, VIg. The KVI

parameter is equivalent to the extinction coefficient in

Beer's law and represents the relative increase in VI due to

an elementary increase in the greenness measure (LAI or

CCD). In this study, the model (Eq. (22)) was used to obtain

relationships of the selected VIs with LAI and CCD,

defining CCD as the product of leaf chlorophyll content

(Chla + b [mg/cm2]) and LAI.

KVI and VI1 were obtained for different combinations of

solar zenith angle (qs), mean leaf tip angle, (MTA) and Chl

a + b (for LAI prediction only). VIg was obtained from

soiltype a (Table 1). The Marquardt nonlinear regression

method (Marquardt, 1963) was used to fit the model (Eq.

(22)) by the least squares method. VI(i) and either LAI(i) or

CCD(i) were used as input vectors, where i denotes a

specific combination of simulation input parameters. The

RMSE and the adjusted coefficient of determination (R2)

were calculated along with the normalized RMSE given as

RMSE/(VI1ÿVIg). The modelled coefficients and the

statistics associated with the fit are given in Table 3a±f.

These statistics are all associated with the accuracy of the

curve fit, but they do not provide any information about the

prediction power of the VIs because of the nonlinear nature

of the relationship between the VIs and the biophysical

parameters. The prediction power is inversely related to the

sensitivity to all parameters other than the one (in this study

LAI or CCD) for which the VI serves as a predictor. To

obtain this information, the shape of the exponential func-

tion relating the VIs and the biophysical parameters needs to

be considered in conjunction with the associated variance.

5. Sensitivity analysis

The sensitivities of the VIs to external factors were

analyzed using the relative equivalent noise approach

Index VIG VIINF KVI RMSE RMSENORM Adj. R2

B_RDVI 0.1397 0.7727 1.1832 0.0736 0.1162 0.9012

B_MSA2VI 0.6018 1.3683 1.1946 0.0824 0.1075 0.9142

B_PVI 0.0216 0.4340 0.7900 0.0627 0.1519 0.8387

B_TSAVI 0.1037 0.8934 2.3050 0.0667 0.0845 0.9388

B_SAVI2 1.2272 13.7779 0.5075 1.0624 0.0846 0.9367

B_ATSAVI 0.0674 0.7936 1.5995 0.0686 0.0945 0.9306

(e) CCD coefficients for Eq. (22) Ð Database 2 (Background effects)

REIPPoly 718.1625 738.0320 0.5998 0.5937 0.0299 0.9919

REIPGaus 710.8325 723.5917 0.6127 1.1873 0.0931 0.9269

REIPLagr 716.7261 744.0662 0.9323 1.5967 0.0584 0.9722

DGVI_DZ1 0.0659 0.7505 0.6813 0.0313 0.0457 0.9819

DGVI_DZ2 0.0011 0.0442 0.4628 0.0015 0.0344 0.9881

CACI 0.7603 58.5364 0.6843 1.9165 0.0332 0.9904

CRCAI 7.1589 143.0635 2.1903 9.3923 0.0691 0.9569

CRCWD 5.7641 94.0638 3.0486 6.1480 0.0696 0.9500

CARI ÿ 0.0279 10.9919 0.9452 0.2573 0.0233 0.9955

R750R700 0.5534 10.0476 0.9638 0.3929 0.0414 0.9859

R750R550 1.4541 9.4278 1.0307 0.3002 0.0377 0.9883

N_RVI ÿ 1.1020 29.5150 0.7611 1.6613 0.0543 0.9752

N_NDVI 0.1503 0.9282 2.4933 0.0512 0.0658 0.9589

N_TVI 0.9274 40.2132 0.8615 1.4258 0.0363 0.9890

N_DVI 0.0584 0.7293 0.7030 0.0305 0.0454 0.9822

N_RDVI 0.1016 0.8036 1.1542 0.0189 0.0269 0.9940

N_MSAVI2 0.5442 1.4138 1.2479 0.0204 0.0235 0.9954

N_PVI 0.0068 0.4595 0.7240 0.0181 0.0401 0.9862

N_TSAVI ÿ 0.0252 0.9223 2.6760 0.0420 0.0443 0.9804

N_SAVI2 0.2462 14.7820 0.7272 0.4274 0.0294 0.9925

N_ATSAVI ÿ 0.0105 0.8263 1.6886 0.0132 0.0158 0.9978

B_RVI ÿ 0.2763 23.5007 0.7911 1.1629 0.0489 0.9799

B_NDVI 0.1857 0.9113 2.3958 0.0522 0.0719 0.9520

B_TVI 2.9509 45.9251 0.7131 1.7516 0.0408 0.9857

B_DVI 0.0680 0.7380 0.6783 0.0312 0.0465 0.9812

B_RDVI 0.1192 0.8014 1.1057 0.0194 0.0285 0.9933

B_MSA2VI 0.5629 1.3955 1.2293 0.0206 0.0247 0.9949

B_PVI 0.0134 0.4646 0.6983 0.0186 0.0412 0.9853

B_TSAVI 0.0266 0.9047 2.5536 0.0435 0.0495 0.9761

B_SAVI2 0.4853 13.1913 0.7413 0.3507 0.0276 0.9934

B_ATSAVI 0.0170 0.8139 1.6355 0.0149 0.0187 0.997

(f) CCD coefficients for Eq. (22) Ð Database 3 (Atmospheric effects)

REIPPoly 717.4049 738.2075 0.5919 4.8097 0.2312 0.6681

REIPGaus 711.2736 724.1225 0.5671 2.7463 0.2137 0.6991

REIPLagr 720.9586 745.5233 0.5723 5.9258 0.2412 0.6461

DGVI_DZ1 0.0563 0.6691 0.6438 0.1204 0.1965 0.7414

DGVI_DZ2 0.0037 0.0405 0.4355 0.0058 0.1581 0.7913

CACI 1.2044 50.8998 0.6283 9.6204 0.1936 0.7458

CRCAI 15.2995 140.9451 2.1093 10.7145 0.0853 0.9365

CRCWD 8.5133 92.814 3.0616 5.2322 0.0621 0.9597

CARI ÿ 0.6382 13.6955 0.9644 6.8612 0.4787 0.3341

R750R700 0.5517 9.6191 0.9887 1.6315 0.1799 0.7859

R750R550 1.4325 9.9761 1.0596 1.4815 0.1734 0.7985

N_RVI ÿ 3.2176 38.9248 0.8561 18.1019 0.4295 0.383

N_NDVI 0.1691 0.9143 2.5663 0.0569 0.0763 0.9448

N_TVI 0.9419 34.828 0.7987 7.2481 0.2139 0.7171

N_DVI 0.0477 0.6406 0.662 0.1173 0.1978 0.7402

N_RDVI 0.1075 0.7415 1.0873 0.1014 0.1599 0.8234

N_MSAVI2 0.5512 1.342 1.1504 0.1379 0.1744 0.7965

N_PVI 0.0047 0.4016 0.6756 0.078 0.1967 0.7435

N_TSAVI ÿ 0.017 0.9063 2.6694 0.0724 0.0784 0.9409

N_SAVI2 0.2425 14.6646 0.7394 3.9311 0.2726 0.605

N_ATSAVI 0.0078 0.7805 1.5751 0.0992 0.1284 0.875

B_RVI ÿ 1.6194 30.324 0.8775 11.7678 0.3684 0.4603

Table 3 (continued)
Index VIG VIINF KVI RMSE RMSENORM Adj. R2

B_NDVI 0.2161 0.9065 2.506 0.0526 0.0762 0.9455

B_TVI 2.8295 40.7737 0.6666 7.3343 0.1933 0.7495

B_DVI 0.0591 0.6553 0.6395 0.1153 0.1934 0.7471

B_RDVI 0.13 0.7474 1.0418 0.0975 0.158 0.8269

B_MSA2VI 0.5733 1.3395 1.1307 0.1281 0.1672 0.8099

B_PVI 0.0124 0.411 0.6521 0.0766 0.1923 0.7503

B_TSAVI 0.0478 0.8983 2.6021 0.0667 0.0784 0.9416

B_SAVI2 0.4753 13.6349 0.751 3.3715 0.2562 0.6352

B_ATSAVI 0.0429 0.7792 1.5311 0.0934 0.1268 0.8783

Table 3 (continued)
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(REN) proposed by (Baret & Guyot, 1991). These authors

used the local slope of the exponential function fitted to the

data to calculate the standard deviation of the greenness

estimate according to the equation:

RENLAI � sLAI

LAI
� sVI

LAI

d�VI�
d�LAI�
� �ÿ1

: �23�

The local slope (Eq. (24)) can be found by differentiation of

Eq. (23):

d�VI�
d�LAI� � ÿKVI�VIg ÿ VI1�exp�ÿKVILAI�: �24�

The advantage of the REN measure is that it allows for a

comparison of VIs for any value or interval of values of the

independent variable (LAI or CCD), thus facilitating a

unique method for intercomparison of the performance of

the VIs.

6. Results and discussion

6.1. The REIP

REIP was determined in two fundamentally different

ways. The polynomial fitting procedure (Eq. (17)) and the

inverted Gaussian model (Eq. (15)) proposed by Bonham-

Carter (1988) and Miller et al. (1990) both approximate

the spectral shape of the red edge by fitting a function to

the spectral data. This method has a built-in smoothing

routine because REIP is determined by differentiation of

these functions. The Lagrangian technique proposed by

Dawson and Curran (1998) forces the interpolation curve

through the given points, thus taking into account the

curvature of the function. The drawback of this method is

that it is more sensitive to the inherent spectral noise of

the system.

The three methods were compared using the canopy

effects data to calculate the frequency distribution of each

of the three methods of REIP determination (Fig. 3). It is

evident from Fig. 3 that results of REIP calculations are

highly dependent upon the choice of methodology. The

REIPGaus data resemble a Gaussian distribution reflecting

the exponential relationship between REIP and vegetation

density because of the overrepresentation of low LAI values

in the data set. REIPPoly shows a wider dynamic range and

its distribution is slightly skewed to the right, suggesting

higher sensitivity to low LAI values. It is further interesting

to note that the three phases of REIP first described by

Horler, Dockray, and Barber (1983) and later confirmed by

Boochs, Kupfer, Dockter, & KuÈhbach (1997) and Gitelson

et al. (1996) are clearly visible in the REIPLagr data. These

studies showed that two to four peaks can be identified in

the second derivative reflectance spectra at both leaf and

canopy level. Boochs et al. (1997) calculated spectral

derivatives over the red edge region of differently managed

field plots of sugar beet and wheat. They identified two or

three dominant peaks in the first derivative spectra, as

Horler et al. (1983) had done previously for various leaf

species. Both of these authors maintain that the first peak

(� 700 nm) is governed by chlorophyll absorption, and that

subsequent peaks are attributed to leaf scattering rather than

to chlorophyll content.

6.2. Broadband vs. narrowband

The broadband (Landsat TM spectral bands) indices were

first compared with their narrowband counterparts in terms

of the relative REN difference defined in Eq. (25)

%REN difference

� RENBroad band VI ÿ RENNarrow band VI

100
: �25�

For LAI estimation, the comparison showed that, with

the exception of TVI, the broadband indices were generally

more sensitive to the pooled effects of illumination

geometry, canopy architecture, and leaf biochemistry (qs,

MTA and Cab). However, all broadband indices were more

affected by the spectral properties of the background (rs(l)),

whereas they were less affected by erroneous assumptions

about the atmospheric composition (t550 and H2O).

For CCD estimation, the comparison showed that the

broadband indices were less sensitive to the pooled effects

of illumination geometry and canopy architecture (qs and

Fig. 3. The distribution of REIP calculated using (1) an inverted Gaussian

model, (2) a sixth-order polynomial, and (3) Lagrangian interpolation

applied to the first-derivative transformation of the reflectance spectrum.

The calculations are based on the Database 1 data.
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MTA). Further, the broadband indices were less sensitive to

erroneous assumptions about the atmospheric composition

(t550 and H2O), but more sensitive to the spectral properties

of the background (rs(l)).

A comparative analysis of performance between hyper-

spectral indices and traditional indices will be influenced by

the bandwidth of the spectral bands used to calculate the

traditional indices. We chose to use the data set that showed

the least dependence on the canopy parameters excluding

the explanatory variable (LAI or CCD). As a result, the

indices used for LAI prediction, except for TVI, were

calculated from the narrowband data set, and the indices

used for CCD prediction were calculated from the broad-

band data set.

6.3. Performance of the VIs

The VIs that we have dealt with in this study can be

grouped into (1) Red±NIR indices, (2) Soil corrected Red-

NIR indices, and (3) Indices based on the shape of the

spectral reflectance curve from the green to the NIR

derived from three or more discrete bands. The Group 1

indices are usually simple and easy to use, because the

involved arithmetics are simple and no auxiliary informa-

tion is required. However, these indices do not allow for

adjustments to account for differences in the spectral

properties of the background. The Group 2 indices have

this flexibility. Richardson and Wiegand (1977) introduced

the soil line concept by demonstrating that bare soil

reflectance values in the Red and the Near-InfraRed

wavelengths are linearly related. The Group 2 indices

include soil line coefficients in their formulations. How-

ever, the slope and intercept of the vegetation isolines in

Red±NIR space depend on both the spectral characteristics

of the background (i.e. the soil line coefficients) and

canopy density and architecture (Baret et al., 1989; Huete,

1989). In consequence, none of the indices belonging to

Group 1 or 2 are insensitive to soil brightness effects (Fig.

2). Group 3 represents indices that in some way or another

are related to the long wavelength absorption wing of the

red chlorophyll pigment absorption band. This feature is

directly coupled to the REIP (Collins, 1978), which has

been shown to be related to vegetation density measures

such as LAI and CCD (Boochs et al., 1997; Horler,

Dockray, & Barber, 1983; Horler, Dockray, Barber, &

Barringer, 1983; Miller et al., 1990). It will also have

implications for indices based on measures of area across

the chlorophyll absorption well. Demetriades-Shah et al.

(1990) showed that the second derivative of vegetation

reflectance spectra is independent of the spectral properties

of the background, if the background reflectance varies

linearly with the wavelength. This has been confirmed in a

study by Baret et al. (1992) based on model simulations.

They also showed that irradiance conditions (sun position

and diffuse fraction) only had a minor influence on REIP.

However, when indices are calculated from data recorded

by high spectral resolution airborne or space-based sensors,

the narrow atmospheric gaseous absorption bands may

cause problems (Baret et al., 1992).

The relative magnitude of atmospheric scattering

decreases with increasing wavelength (Kaufman, 1989).

Since the reflectance of vegetation is low in the visible

wavelengths because of absorption by chlorophyll, the

radiance measured from a space-based platform will be

dominated by path radiance. Thus, VIs calculated from such

data will be sensitive to changes of atmospheric composi-

tion and should be corrected for atmospheric effects prior to

comparative analyses. Jackson, Slater, and Pinter (1983)

tested the effect of atmospheric turbidity on some of the

Groups 1 and 2 indices and found that atmospheric path

radiance affected all of the indices, but especially the ratio-

based indices were found to be very sensitive to atmospheric

path radiance.

6.3.1. Prediction of LAI

The REN values associated with each VI for canopy,

background, and atmospheric effects were calculated and

graphed for different levels of LAI (Fig. 4a±d). The indices

that were least affected by variations in canopy architecture

and biochemistry as well as by the spectral properties of the

background were SAVI2, RDVI, MSAVI2, and ATSAVI.

The indices that were least affected by erroneous assump-

tions about atmospheric properties were CACI, DZ2_DGVI,

PVI, TVI, DVI, and DZ1_DGVI. However, these indices all

showed slightly higher dependence on the properties of the

canopy and significantly higher dependence on the spectral

properties of the background. The well-known RVI and

NDVI were the best indices at low and medium LAIs,

respectively. The CRCWD index also performed well at low

to medium LAIs, but only marginally better than the much

simpler NDVI, which is also considerably less sensitive to

variations of the solar zenith angle (Fig. 6a±b). The very

similar sensitivity patterns between CRCWD and NDVI and

the sensitivity of CRCWD to solar zenith angle suggests

using NDVI, because this index is widely known and much

simpler to calculate.

In dense canopies characterized by high LAIs the best

LAI estimator in terms of sensitivity to canopy effects

was MSAVI2. However, this index is very sensitive to

atmospheric effects. The CACI index provides an alter-

native if atmospheric effects are of concern. TVI is the

broadband variant of the CACI index. A comparison

between the performance of these two indices reveals

that the standard error of the LAI estimate associated with

canopy effects is only reduced by approximately 8% if

CACI is replaced by TVI or DVI for high range LAI

values (Fig. 4c).

It is interesting to note that the REIP measures all

performed poorly to variations in the canopy. These results

contradict the results of a previous study by Broge et al.

(1997), which proved REIPGaus to be better than NDVI for

estimation of LAI. This suggests that the choice of VI for
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a specific purpose should be based on a sensitivity analysis

that only considers the range of parameters specific to the

soil±vegetation system under investigation. For instance,

the range in leaf chlorophyll content has been set to a

factor 4, which is likely to be far too high for most cereal

crops, whereas this range might be a reasonable choice if

several different vegetation types are to be stratified using

the same algorithm.

6.3.2. Prediction of CCD

For CCD prediction the situation is slightly different

(Fig. 5a±d). Overall, the index that proved least affected

by canopy variations was the simple broadband RVI.

However, SAVI2 is a better choice when both soil

background and atmospheric effects are of concern.

Whereas the simpler ratio-based indices seem to be least

affected by canopy and atmospheric variations at low

CCD values, the novel CRCAI index proposed in this

paper proved superior at midrange CCD values. The

REIP calculated using the Lagrangian interpolation tech-

nique (REIPLagr) proved to be the best indicator of CCD

in dense green vegetation when the general status of the

soil±vegetation system and/or the atmospheric conditions

are unknown.

Using the wavelength of maximum slope (REIP) at

the canopy level has been reported to minimize effects

of atmosphere (Baret et al., 1992) and background (Baret

et al., 1992; Demetriades-Shah et al., 1990; Horler et al.,

1983). Our results confirm this for high vegetation

densities. However, at low vegetation densities our

results show that REIP is highly sensitive not only to

erroneous assumptions about the atmospheric composi-

tion, but also to structural and biochemical variations in

the canopy.

It is interesting to note that the sequence of the REIP

measures is consistent at all levels of LAI and CCD (Figs.

4a±c and 5a±c) in terms of REN induced by canopy

effects. This suggests that the Lagrangian interpolation

method is superior for determination of REIP for error-

free data. However, this method will be relatively sensitive

to the noise inherent in real spectral reflectance data sets.

This is due to the fact that REIPLagr is calculated from a

narrow spectral window of three adjacent bands that are

red- or blue-shifted across the red edge. The REIPGaus and

REIPPoly indices that are based on a function fitted to the

reflectance of all 16 bands across the red edge region are

less sensitive to variations of background and atmosphere.

The reason for this is the built-in smoothing effect of these

techniques and the fact that the spectral window of

operation remains fixed. All the REIP measures proved

to be relatively insensitive to variations in solar zenith

angle (Fig. 6a), which is in agreement with the findings of

other studies (Baret et al., 1992; Baret, Jacquemoud,

Leprieur, & Guyot, 1990).

Fig. 4. (a± d) REN associated with estimation of LAI. REN is calculated for each index with respect to canopy, background, and atmospheric effects. The

indices are listed from left towards right with increasing sensitivity to variations of MTA and Cab.
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The proposed CRCWD index is highly sensitive to

variations of the position of the sun. SAVI2 is generally

least affected by variations in the solar geometry (Fig. 6b)

whereas NDVI and the transformed SAVIs are consider-

ably affected at low- and midrange LAI values and RVI

is affected at high LAI values. The dependency of SAVI2

on solar angle is consistently low (Fig. 6b). This strength-

ens the position of SAVI2 as the best suited all-round

index for estimation of LAI and CCD of homogenous

green canopies.

7. Conclusion

Classic VIs based on broadband (TM sensor configura-

tion) and narrow band (ideal 10 nm wide bands) reflectance

data were compared. It was shown that the broadband

indices were less affected by external factors when used

as estimators of LAI or canopy chlorophyll content.

The performance of these indices was then compared

with the performance of various hyperspectral indices, i.e.

recently proposed indices that are based on narrow band

Fig. 5. (a± d) REN associated with estimation of CCD. REN is calculated for each index with respect to canopy, background, and atmospheric effects. The

indices are listed from left towards right with increasing sensitivity to variations of MTA.

Fig. 6. (a± b) Sensitivity of the VIs to solar zenith angle variations. The sensitivity is expressed as the coefficient of variation of the REN value calculated at

four different solar zenith angles (qs=[15°, 30°, 45°, 60°]). The coefficient of variation of REN is calculated as the ratio of the standard deviation of REN to the

average REN.
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reflectance data. The classic broadband VIs generally seem

to be slightly better at predicting LAI (Fig. 4d) and CCD

(Fig. 5d) than the more recent narrowband indices, includ-

ing the ones based on waveform analysis techniques.

Overall, the broadband SAVI2 index is least affected by

background reflectance for both LAI and CCD estimation,

and is also the best predictor of LAI. RVI is marginally

better than SAVI2 for CCD estimation in terms of canopy

effects, but it becomes increasingly sensitive to atmospheric

effects and solar zenith angle with increasing vegetation

densities. Further, SAVI2 proved to be least affected by

illumination geometry changes.

RVI was the best estimator of both LAI and CCD for low

vegetation densities, i.e. the least sensitive to variations in

canopy structure or atmospheric composition, but ATSAVI

was least sensitive to changes in background reflectance.

Continuum removal techniques applied to high resolu-

tion spectral reflectances across the red chlorophyll absorp-

tion band led to the development of two new VIs based on

the area or depth of the convex hull spanned by the

continuum removed spectra. These new indices proved to

be the best estimators at medium range vegetation densities.

The CRCAI index is superior for estimation of CCD in the

midrange (0.6 < CCD(g Chl/ground m2) < 1.4) if canopy

properties are the major unknown (Fig. 5d). Likewise, the

CRCWD index is the most accurate estimator of LAI in the

midrange (1.2 < LAI < 2.8) under these conditions (Fig. 4d).

However, the sensitivity pattern of NDVI is practically

identical to that of CRCWD, which suggests that NDVI

be used because of its simplicity compared with CRCWD.

The REIP indices proved surprisingly sensitive to

variations of canopy parameters, background parameters,

and atmospheric parameters. Only at high vegetation

densities did the REIP indices perform well for estimation

of CCD. The Lagrangian interpolation method gives the

most accurate estimate of REIP. It is consistently the best

of the three methods for estimation of LAI or CCD in

terms of sensitivity to canopy effects, and the best overall

estimator of CCD at high vegetation densities. LAI was

best estimated by MSAVI2 at high vegetation densities.

However, the area-based hyperspectral indices CACI and

DZ2_DGVI provide an alternative if atmospheric effects

are of concern.

The results indicate that hyperspectral indices based on

various methods of waveform analysis or discrete narrow-

band ratios on and around the red edge region are not

necessarily better predictors of LAI and CCD than the

classic broadband indices considered in this study (Figs.

4a±d and 5a±d). However, one must bear in mind that

this conclusion is based on the assumption that the

SAIL + PROSPECT model can accurately describe the radia-

tive regime in a canopy, and that this canopy fulfil the

assumptions of the SAIL model regarding homogeneity of

the canopy and azimuthally uniform leaf orientation. Further,

the presented results are biased by the choice of input

parameters for each of the databases. This kind of analysis

should therefore be designed to match the specific conditions

of the soil±vegetation system under investigation. The range

of each of the bio-physical parameters used as input for the

simulations should be carefully selected based on a priori

knowledge of extremes encountered by phenological evolu-

tion, climatic factors, or other external parameters affecting

the system, thus providing the optimal foundation for the

selection of the most suitable VI.

The results reported in this paper are derived from an

analysis of simulated reflectance data, i.e. data that are free

of noise. Measured data are usually noisy due to signal

amplification, binary encoding, etc. While it was not the

purpose of this study to assess the effects of measurement-

related noise, it may be an important factor depending on

the sensor system, vegetation status, and illumination con-

ditions. Future works should consider establishment of

functions to calculate sensor-specific spectral signal-to-

noise ratios for various conditions. This will allow effects

of sensor-related noise to be included in this kind of

analysis. It could be facilitated simply by adding a Gaussian

distributed noise component with zero mean and variance

equal to the modelled signal-to-noise to each reflectance

value in the simulated spectra.
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